Since the first investigation of the Hubbard model in the limit of infinite dimensions by Metzner and Vollhardt, dynamical mean-field theory (DMFT) has become a very powerful tool for the investigation of lattice models of correlated electrons. In DMFT the lattice model is mapped on an effective quantum impurity model in a bath which has to be determined self-consistently. This approach lead to a significant progress in our understanding of typical correlation problems such as the Mott transition; furthermore, the combination of DMFT with ab-initio methods now allows for a realistic treatment of correlated materials. The focus of these lecture notes is on the relation between quantum impurity physics and the physics of lattice models within DMFT. Issues such as the observability of impurity quantum phase transitions in the corresponding lattice models are discussed in detail. |